On the Influence of Diurnal and Subdiurnal Signals in the Normal Vector on Large Ring Laser Gyroscope Observations

Author:

Tercjak Monika,Gebauer André,Rajner Marcin,Brzeziński Aleksander,Schreiber Karl Ulrich

Abstract

AbstractThe ring laser gyroscope (RLG) technique has been investigated for over 20 years as a potential complement to space geodetic techniques in measuring Earth rotation. However, RLGs are also sensitive to changes in their terrestrial orientation. Therefore in this paper, we review how the high-frequency band (i.e. signals shorter than 0.5 cycle per day) of the known phenomena causing site deformation contribute to the RLG observable, the Sagnac frequency. We study the impact of solid Earth tides, ocean tidal loading and non-tidal loading phenomena (atmospheric pressure loading and continental hydrosphere loading). Also, we evaluate the differences between available models of the phenomena and the importance of the Love numbers used in modeling the impact of solid Earth tides. Finally, we compare modeled variations in the instrument orientation with the ones observed with a tiltmeter. Our results prove that at the present accuracy of the RLG technique, solid Earth tides and ocean tidal loading effects have significant effect on RLG measurements, and continental hydrosphere loading can be actually neglected. Regarding the atmospheric loading model, its application might introduce some undesired signals. We also show that discrepancies arising from the use of different models can be neglected, and there is almost no impact arising from the use of different Love numbers. Finally, we discuss differences between data reduced with tiltmeter observations and these reduced with modeled signal, and potential causes of this discrepancies.

Funder

Narodowe Centrum Nauki

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Status of the GINGER project;AVS Quantum Science;2023-10-26

2. Rotational Seismology: Review of Achievements and Outlooks;Seismic Instruments;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3