Multi-scale Simulation of Subsequent Tsunami Waves in Japan Excited by Air Pressure Waves Due to the 2022 Tonga Volcanic Eruption

Author:

Miyashita Takuya,Nishino Ai,Ho Tung-Cheng,Yasuda Tomohiro,Mori Nobuhito,Shimura Tomoya,Fukui Nobuki

Abstract

AbstractThe 2022 Hunga Tonga-Hunga Ha’apai eruption generated tsunamis that propagated across the Pacific Ocean. Along the coast of Japan, nearshore amplification led to amplitudes of nearly 1 m at some locations, with varying peak tsunami occurrence times. The leading tsunami wave can generally be reproduced by Lamb waves, which are a type of air-pressure wave generated by an eruption. However, subsequent tsunamis that occurred several hours after the leading wave tended to be larger for unknown reasons. This study performs multi-scale numerical simulations to investigate subsequent tsunami waves in the vicinity of Japan induced by air pressure waves caused by the eruption. The atmospheric pressure field was created using a dispersion relation of atmospheric gravity wave and tuned by physical parameters based on observational records. The tsunami simulations used the adaptive mesh refinement method, incorporating detailed bathymetry and topography to solve the tsunami at various spatial scales. The simulations effectively reproduced the tsunami waveforms observed at numerous coastal locations, and results indicate that the factors contributing to the maximum tsunami amplitude differ by region. In particular, bay resonance plays a major role in determining the maximum amplitude at many sites along the east coast of Japan. However, large tsunami amplification at some west coast locations was not replicated, probably because it was caused by amplification during oceanic wave propagation rather than meteorological factors. These findings enhance our understanding of meteotsunami complexity and help distinguish tsunami amplification factors.

Funder

Japan Society for the Promotion of Science

Core-to-Core Collaborative Research Program of the Earthquake Research Institute, the University of Tokyo, and the Disaster Prevention Research Institute, Kyoto University

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3