Study of Cloud Condensation Nuclei Activities and Hygroscopic Properties Based on Core-Shell Model

Author:

Zhang Zefeng,Qin Xin,Wang Weiwei

Abstract

AbstractCloud condensation nuclei (CCN) activities and hygroscopic properties of aerosol particles were studied based on the core-shell model with extended Köhler equation. Three kinds of core-shell particles were mainly considered: (1) insoluble core and soluble inorganic shell; (2) insoluble core and organic shell with limited solubility; (3) organic core with limited solubility and soluble inorganic shell. Results of the model calculations showed that Köhler curves of aerosol particles were different from classical Köhler curves of inorganic particles. Particle size, chemical composition and mass fraction of components all influence the curve shape, and the curve might show one or more extreme points of supersaturation. Critical supersaturation decreased when the mass fraction of the shell increased. This implied that the heterogeneous chemical reaction that happened to suspended particles in air could increase shell mass fraction and make particles more CCN active and hygroscopic. When the three models were compared, particles in model 3 were most CCN active, while those in model 2 were least CCN active. If the shell mass fraction was 0.1–0.2 for model 3 and 0.3–0.4 for model 1, the calculated hygroscopic parameter κ was closer to historical measuring results of 0.2–0.3 in polluted areas in China while the hygroscopic parameter would never be close to measuring results in model 2 no matter how high the shell mass fraction was. Based on discussion of two component particles of the core-shell model, more components in core-shell model could be considered, and the calculations were discussed in this article.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3