1. Agoshkov, V. I. (2003), Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics (IVM RAN, Moscow, 2003, 256 p.) [in Russian].
2. Agoshkov, V.I. (2005), Inverse problems of the mathematical theory of tides: boundary-function problem. Russ. J. Numer. Anal. Math. Modelling. V. 20. N. 1. P. 1-18.
3. Agoshkov, V.I., Gusev A.V., Dianski N.A., Oleinikov R.V. (2007), An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data. Russ. J. Numer. Anal. Math. Modelling. V. 22. N. 2. P. 133-161.
4. Agoshkov, V.I., V. M. Ipatova (2007), Solvability of the Observational Data Assimilation Problem for a 3D Ocean Dynamics Model. Differential Equations N. 8. P. 1064–1075.
5. Agoshkov, V.I., V. M. Ipatova (2007), Existence Theorems for a 3D Ocean Dynamics Model and Data Assimila tion Problems. Dokl. Akad. Nauk. V. 412. N. 2. P. 151–153.