Total Organic Carbon Predictions from Lower Barnett Shale Well-log Data Applying an Optimized Data Matching Algorithm at Various Sampling Densities
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geochemistry and Petrology,Geophysics
Link
https://link.springer.com/content/pdf/10.1007/s00024-020-02566-1.pdf
Reference51 articles.
1. Abouelresh, M., & Slatt, R. (2012). Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas. AAPG Bulletin, 96(1), 1–22. https://doi.org/10.1306/04261110116.
2. Alizadeh, B., Maroufi, K., & Heidarifard, M. H. (2018). Estimating source rock parameters using wireline data: An example from Dezful Embayment, South West of Iran. Journal of Petroleum Science and Engineering, 167, 857–868.
3. Alizadeh, B., Najjari, S., & Kadkhodaie, A. (2011). Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars gas field, Iran. Computers and Geosciences, 45, 261–269.
4. Al-Mudhafar, W. J. (2017). Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms. Journal of Petroleum Exploration and Production, 7, 1023–1033.
5. Alshakhs, M., & Rezaee, R. (2017). A new method to estimate total organic carbon (TOC) content, an example from Goldwyer Shale Formation, the Canning Basin. The Open Petroleum Engineering Journal, 10, 118–133. https://doi.org/10.2174/1874834101710010118.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The dominant influence of muddy bottom currents on organic-rich fine-grained sedimentary rocks: The lower Congo Basin, west Africa;Marine and Petroleum Geology;2024-10
2. Well log prediction of total organic carbon: A comprehensive review;Earth-Science Reviews;2024-09
3. Predicting total organic carbon from few well logs aided by well-log attributes;Petroleum;2022-11
4. Geophysical Well-Log Evaluation in the Era of Unconventional Hydrocarbon Resources: A Review on Current Status and Prospects;Surveys in Geophysics;2022-04-29
5. A comparative study of individual and hybrid machine learning methods for estimation of vitrinite reflectance (Ro) from petrophysical well logs;Modeling Earth Systems and Environment;2022-04-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3