Discrete Fault Models

Author:

Dragoni MicheleORCID

Abstract

AbstractFault surfaces are characterized by an inhomogeneous friction distribution, that can be represented with asperity models. Fault mechanics is dominated by asperities, so that a fruitful approach is to use discrete models, where asperities are the basic elements and the state of the fault is described by the average values of stress, friction and slip on each asperity. Under reasonable assumptions, the equations of motion can be solved analytically, with a deeper understanding of the behavior of the system. Fault dynamics has a sticking mode, where asperities are stationary, and a number of slipping modes, corresponding to the separate or simultaneous motion of asperities. Any seismic event is a sequence of slipping modes and a large variety of source functions is possible. Many large earthquakes are observed to be the consequence of the failure of two asperities: a discrete two-asperity model shows a rich dynamics and allows a detailed study of interaction between asperities. In this framework, fault evolution during coseismic and interseismic intervals can be calculated in terms of fault slip, stress state, energy release and seismic spectrum, including viscoelastic relaxation, fault creep and stress perturbations from other faults. Discrete models may include interaction between neighboring faults, allowing to assess conditions for the occurrence of seismic sequences in a fault system. A review of recent work on this subject is presented with applications to real earthquakes.

Funder

Alma Mater Studiorum - Università di Bologna

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3