Hydroacoustic Signals Originating from Marine Volcanic Activity at Kadovar Island, Papua New Guinea, Recorded by the Comprehensive Nuclear-Test-Ban Treaty International Monitoring System

Author:

Matsumoto HiroyukiORCID,Zampolli MarioORCID,Haralabus GeorgiosORCID,Stanley Jerry,Robertson James,Özel Nurcan MeralORCID

Abstract

AbstractHydroacoustic signals originating from marine volcanic activity at Kadovar Island (Papua New Guinea), recorded by the Comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System (IMS) hydroacoustic (HA) station HA11 Wake Island (USA), are examined herein. Episodes of high volcanic activity were identified on two occasions, separated by a period of 1 month. The events studied pertain to an initial eruption series during a period between January and February 2018. Based on local visual observations, the Kadovar volcano began to erupt at the summit and then created a new vent spot near the coast. This series of events also included the collapse of a lava dome. Direction-of-arrival estimates for the hydroacoustic signals detected at HA11 were computed using a cross-correlation technique, which allowed for the discrimination between hydroacoustic signals originating from the Kadovar volcanic activity and numerous other hydroacoustic signals attributed to seismic activity in the Pacific Ocean. The Kadovar-related seismic signals could not be identified by regional IMS seismic stations, suggesting a submarine origin of these events. On the other hand, hydroacoustic signals originating from the Kadovar volcanic activity were identified by the seismometer at Manus Island, which is located between Kadovar and HA11. The study suggests that a series of explosive bursts followed by an unusual rumble and a broadband signal plus rumble may constrain the time of the lava dome collapse event at Kadovar Island to 00:30 UTC, 00:33 UTC, and 00:46 UTC on 09 February 2018. Given the compatibility of this observation with the tsunami generation reported by eyewitnesses on the nearby island of Blup Blup, the authors interpret this particular hydroacoustic signal as being a remote observation of this tsunamigenic event. The objective of this study was to assess the potential added value of IMS hydroacoustic data for remote surveillance of geohazards in otherwise sparsely monitored areas.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3