Role of Integrated Magnetics and Geology in Tracking and Exploring Complex Structures Controlling Gold Mineralization. Example from the Fawakheir-Atalla Gold Prospects, Eastern Desert, Egypt

Author:

Gobashy Mohamed MostafaORCID,Eldougdoug AbdelmonemORCID,Abdelwahed MohamedORCID,Abdelazeem MahaORCID,Abd El-Rahman YasserORCID,Abdelhalim AhmedORCID,Said SaidORCID

Abstract

AbstractGold mineralisation is spatially and chronologically correlated with fault/shear zones in many of the world-class gold mines. Hence, the indirect exploration for Au mineralisation is linked with shearing and complex structures in many areas. Hence, in general, the need for a rapid, effective and new technology for gold exploration that reflects the structure set-up, shear zones, faults and related structural elements is crucial in the gold industry. In this article, we present an example of an integrated approach to gold exploration in the Fawakheir-Attala gold mining prospect in the eastern desert of Egypt. Remote sensing is used to test for rock differentiation; intensive field geological investigations were conducted along several traverses. Petrographic and geochemical analysis of selected samples confirmed Au content in some localities. Moreover, magnetic methods are used extensively (either aeromagnetic or measured land profiles) to investigate the magnetic signature of the different reported rock units and their relationship with gold occurrences and deposits. Normalised source strength transformation, magnitude magnetic transforms and subsurface modelling are used to explore the inherent relation between the surface and subsurface magnetic susceptibilities. The magnetic signature of the talc-carbonate rocks is determined. The gradational contact against the serpentinite is explained. Because three current Au mines are associated with contacts/fractures, the clear relation between the contacts/fractures and the magnetic data and the comparison with the contact occurrence density COD (heat) magnetic filtered map, the present analysis workflow can now be used to suggest new locations for Au occurrences.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3