1. Agrawal, M., Pulliam, J., Sen, M. K., Dutta, U., Pasyanos, M. E., & Mellors, R. (2015). Crustal and uppermost mantle structure in the Middle East: Assessing constraints provided by jointly modelling Ps and Sp receiver functions and Rayleigh wave group velocity dispersion curves. Geophysical Journal International, 201, 783–810. https://doi.org/10.1093/gji/ggv050
2. Amanti, M., Muraro, C., Roma, M., Chiessi, V., Puzzilli, L., Catalano, S., Romagnoli, G., Tortorici, G., Cavuoto, G., Albarello, D., Fantozzi, P. L., Paolucci, E., Pieruccini, P., Caprari, P., Mirabella, F., Della Seta, M., Esposito, C., Di Curzio, D., Francescone, M., Pizzi, A., Macerola, L., Nocentini, M., & Tallini, M. (2020). Geological and geotechnical models definition for 3rd level seismic microzonation studies in Central Italy. Bull Earthq Eng. Special Issue on “Seismic Microzonation of Central Italy following the 2016–2017 Seismic Sequence”. First Online: 18th April 2020https://doi.org/10.1007/s10518-020-00843-x.
3. Anthymidis, M., Papazachos, C., Ohrnberger, M., & Theodoulidis. N. (2018). Shallow 3D geophysical structure from joint inversion of group slowness dispersion and HVSR curves using a small-scale ambient noise array in urban environment: The case of Thessaloniki City (Northern Greece). In EGU general assembly conference abstracts, p. 1260.
4. Bard PY, SESAME team (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: Measurements, processing and interpretation. User_Guidelines.pdf, p 62.
5. Bensalem, R., Chatelain, J. L., Machane, D., Oubaiche, E. H., Bouchelouh, A., Benkaci, N., et al. (2017). Mediterranean Sea and anthropogenic influences on ambient vibration amplitudes in the low-frequency and high-frequency domains in the Algiers region. Arabian Journal of Geosciences, 10, 282. https://doi.org/10.1007/s12517-017-3065-2