Morphologic Adjustment of a River Reach with Groynes to Channel Bypassing

Author:

Lehotský Milan,Horáčková ŠárkaORCID,Rusnák Miloš,Štefanička Tomáš,Kleň Jaroslav

Abstract

AbstractThis article is focused on the investigation of the spatio-temporal variability of the Danube River reach’s vertical accretion thickness due to the response of the Danube River reach to bypassing. Five groyne-induced benches (GIBs) of the bypassed channel developed after water diversion in 1992 was studied by changes in topography for three-time spans (for the original gravel surface, for the surface before the 2013 flood and for the surface after the 2013 flood). The allostratigraphic approach was applied to 548 drilling probes at all GIBs and toptop, supra-platform, tail and backchannel geomorphic units have been identified at each GIB. The main to side-channel system connectivity increase sedimentation rates and the accretion was controlled by large flood events. The 100-year flood in 2013 contributed to the total volume by almost 26%. During study period 1992–2017, totally 1,146,589 m3 was accreted on five GIBs, of this 209,752 m3 during flood event in 2013 and 267,700 m3 in post flood period 2014–2017. The top geomorphic unit exhibits the highest median values of vertical accretion and for all GIBs accretion thickness are not related to the height above the mean channel water level. The thickness of accretion varied, likely because the variability of the vegetation cover caused variable hydraulic conditions and accretion rate span from 3.8 cm.year−1 to 5.3 cm.year−1. The investigation of the sediment thickness over long time spans 24 years and a large flood event) allowed us to conclude that the thickness is spatially variable for individual GIBs; however, its trend over time remains constants depending on the intake of sediments during large floodsd events. This article also provides a methodological template for the detailed investigation of river channel adjustment due to bypassing.

Funder

Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR

Slovak Academy of Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3