Large Ozone Hole in 2023 and the Hunga Tonga Volcanic Eruption
-
Published:2024-07-31
Issue:
Volume:
Page:
-
ISSN:0033-4553
-
Container-title:Pure and Applied Geophysics
-
language:en
-
Short-container-title:Pure Appl. Geophys.
Author:
Kozubek MichalORCID, Krizan Peter, Ramatheerthan Sunil KumarORCID, Laštovička JanORCID
Abstract
AbstractPolar stratospheric chemistry is highly sensitive to changes in water vapor content and temperature. We identified an unusual behavior of water vapor and temperature in the southern polar winter stratosphere in 2023. The relationships between the Hunga-Tonga eruption injection of water vapor (detected in the tropics) and its transport to SH high latitudes, temperature changes and ozone anomalies at southern high latitudes are discussed, as well as the roles of zonal wind and the meridional flux of zonal mean zonal momentum. These parameters exhibit a consistent pattern in anomalous year 2023. In the winter of 2023 in the Southern Hemisphere, an unexpected decrease in ozone levels and the emergence of an excessive ozone hole were observed. This event marked one of the deepest Antarctic ozone holes with the largest area since 2011. This appears to be associated with the Hunga Tonga eruption anomalous water vapor injection. This study highlights importance of water vapor for evolution of the Antarctic stratosphere.
Funder
Grantová Agentura České Republiky Institute of Atmospheric Physics of the Czech Academy of Sciences
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Aa, E., Zhang, S.-R., Erickson, P. J., Vierinen, J., Coster, A. J., Goncharenko, L. P., Spicher, A., & Rideout, W. (2022). Significant ionospheric hole and equatorial plasma bubbles after the 2022 Tonga volcano eruption. Space Weather, 20, e2022SW003101. https://doi.org/10.1029/2022SW003101 2. Ajith, K. K., Sunil, A. S., Sunil, P. S., Thomas, D., Kunnummal, P., & Rose, M. S. (2022). Atmospheric and ionospheric signatures associated with the 15 January 2022 cataclysmic Hunga–Tonga volcanic eruption: a multi-layer observation. Pure and Applied Geophysics, 179, 4267–4277. https://doi.org/10.1007/s00024-022-03172-z 3. Carr, J. L., Horvath, A., Wu, D. L., & Friberg, M. D. (2022). Stereo plume height and motion retrievals for the record-setting Hunga Tonga–Hunga Ha’apai eruption of January 15th 2022. Geophysical Research Letters, 49(9), e2022GL098131. https://doi.org/10.1029/2022GL098131 4. Chen, C.-H., Sun, Y.-Y., Zhang, X., Wang, F., Lin, K., Gao, Y., Tang, C.-C., Liu, J., Huang, R., & Huang, Q. (2023). Far-field coupling and interactions in multiple geospheres after the Tonga volcano eruption. Surveys in Geophysics, 44(3), 587–601. https://doi.org/10.1007/s10712-022-09753-w 5. Chum, J., Sindelarova, T., Koucka Knizova, P., Podolská, K., Rusz, J., Baše, J., Nakata, H., Hosokawa, K., Danielides, M., Schmidt, C., Knez, L., Liu, J.-Y., Molina, M. G., Fagre, M., Katamzi-Joseph, Z., Ohya, H., Omori, T., Laštovička, J., Obrazová Burešová, D., … Truhlík, V. (2023). Atmospheric and ionospheric waves induced by the Hunga eruption on 15 January 2022; Doppler sounding and infrasound. Geophysical Journal International, 233, 1429–1443. https://doi.org/10.1093/gji/ggac517
|
|