Abstract
AbstractThermoforming of continuous fiber-reinforced plastics made of semi-crystalline thermoplastics has gained significant interest due to its potential for producing lightweight and high-strength components for various applications. Before thermoforming, a laminate is heated to a temperature beyond the melting point of the thermoplastic. During the subsequent forming process, the laminate is continuously cooled, which triggers non-isothermal crystallization in the semi-crystalline matrix material. In this context, the study of crystallization kinetics is crucial in identifying phase transition, analyzing exothermic latent heat during crystallization and determining inhomogeneous crystallinity distribution caused by uneven cooling in the laminate’s thickness direction. This contribution primarily deals with experimental investigations, modeling and finite element simulations for characterizing the crystallization kinetics in the matrix material, Polyamide 6 and investigating the aforementioned factors. To model the crystallization kinetics, an extended form of the Avrami model, known as the modified Nakamura–Ziabicki model, is adopted. The parameters for the modified Nakamura–Ziabicki model, which depend on the local cooling rates, are identified based on fitting the model to flash DSC (differential scanning calorimetry with high cooling rates) and standard DSC non-isothermal cooling experiments. Finally, the model is implemented into the commercial FE software COMSOL Multiphysics® and the crystallinity evolution in the laminate is simulated for the process-relevant die and laminate temperatures and laminate thicknesses.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献