Characterization of crystallization kinetics in Polyamide 6 with a focus on modeling the thermoforming process: experiments, modeling, simulations

Author:

Kulkarni SameerORCID,Reuvers Marie-Christine,Brepols Tim,Reese Stefanie,Johlitz Michael,Lion Alexander

Abstract

AbstractThermoforming of continuous fiber-reinforced plastics made of semi-crystalline thermoplastics has gained significant interest due to its potential for producing lightweight and high-strength components for various applications. Before thermoforming, a laminate is heated to a temperature beyond the melting point of the thermoplastic. During the subsequent forming process, the laminate is continuously cooled, which triggers non-isothermal crystallization in the semi-crystalline matrix material. In this context, the study of crystallization kinetics is crucial in identifying phase transition, analyzing exothermic latent heat during crystallization and determining inhomogeneous crystallinity distribution caused by uneven cooling in the laminate’s thickness direction. This contribution primarily deals with experimental investigations, modeling and finite element simulations for characterizing the crystallization kinetics in the matrix material, Polyamide 6 and investigating the aforementioned factors. To model the crystallization kinetics, an extended form of the Avrami model, known as the modified Nakamura–Ziabicki model, is adopted. The parameters for the modified Nakamura–Ziabicki model, which depend on the local cooling rates, are identified based on fitting the model to flash DSC (differential scanning calorimetry with high cooling rates) and standard DSC non-isothermal cooling experiments. Finally, the model is implemented into the commercial FE software COMSOL Multiphysics® and the crystallinity evolution in the laminate is simulated for the process-relevant die and laminate temperatures and laminate thicknesses.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3