Modeling of blood flow in the framework of micropolar theory

Author:

Vilchevskaya Anastasiya E.,Vilchevskaya Elena N.,Müller Wolfgang H.,Eremeyev Victor A.

Abstract

AbstractIn this paper, we study the blood flow through blood vessels of various radii (including the case of variable cross section as well as modeling the blood flow through venae and arteries). Two approaches are discussed in order to mimic the dependence of blood viscosity on red blood cells aggregation, which changes with the shear rate and position inside the vessel: Two microstructural parameters together with empirical constitutive equations as a characteristic of aggregation are proposed, namely the microinertia as well as the volume fraction of blood particles (erythrocytes, platelets and leukocytes). Consequently, the Navier–Stokes system of equations for an incompressible fluid is supplemented by a constitutive equation for the moment of inertia in one case and for the volume fraction in another. The problems are solved numerically by the finite volume method for vessels of various geometries in spatial description. A comparison with experimental data for a narrow capillary shows the efficiency of the proposed constitutive equations for describing blood flow. Also, velocity profiles are obtained on the basis of compiled empirical formula for various sections of a blood vessel of variable radius. In addition, the flow through vessels of the human circulatory system, such as the inferior vena cava and the carotid artery, are studied.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3