Numerical treatment of reactive diffusion using the discontinuous Galerkin method

Author:

Flachberger WolfgangORCID,Svoboda Jiri,Antretter Thomas,Petersmann Manuel,Leitner Silvia

Abstract

AbstractThis work presents a new finite element variational formulation for the numerical treatment of diffusional phase transformations using the discontinuous Galerkin method (DGM). Steep concentration and property gradients near phase boundaries require particular focus on a sound numerical treatment. There are different ways to tackle this problem ranging from (i) the well-known phase field method (PFM) (Biner et al. in Programming phase-field modeling, Springer, Berlin, 2017, Emmerich in The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models, Springer, Berlin, 2003), where the interface is described continuously to (ii) methods that allow sharp transitions at phase boundaries, such as reactive diffusion models (Svoboda and Fischer in Comput Mater Sci 127:136–140, 2017, 78:39–46, 2013, Svoboda et al. in Comput Mater Sci 95:309–315, 2014). Phase transformation problems with continuous property changes can be implemented using the continuous Galerkin method (GM). Sharp interface models, however, lead to stability problems with the GM. A method that is able to treat the features of sharp interface models is the discontinuous Galerkin method. This method is well understood for regular diffusion problems (Cockburn in ZAMM J Appl Math Mech 83(11):731–754, 2003). As will be shown, it is also particularly well suited to model phase transformations. We discuss the thermodynamic background by review of a multi-phase, binary system. A new DGM formulation for the phase transformation problem with sharp interfaces is then introduced. Finally, the derived method is used in a 2D microstructural evolution simulation that features a binary, three-phase system that also takes the vacancy mechanism of solid body diffusion into account.

Funder

Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Montanuniversität Leoben

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

Reference39 articles.

1. Ahrens, J., Geveci, B., Law, C., Hansen, C., Johnson, C.: 36-paraview: an end-user tool for large-data visualization. Vis Handb 717, 50038–1 (2005)

2. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: Archive of Numerical Software: The Fenics Project Version 1.5. University Library Heidelberg (2015)

3. Ayachit, U.: The Paraview Guide: A Parallel Visualization Application. Kitware, Inc., New York (2015)

4. Biner, S.B., et al.: Programming Phase-Field Modeling. Springer, Berlin (2017)

5. Cockburn, B.: Discontinuous Galerkin methods. ZAMM J. Appl. Math. Mech. 83(11), 731–754 (2003)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3