Micromorphic theory as a model for blood in the microcirculation: correction and analysis

Author:

Massing FlorianORCID,Glane Sebastian,Müller Wolfgang H.,Eremeyev Victor A.

Abstract

AbstractThis paper analyzes the applicability of Eringen’s Generalized Continuum Theories as a model for human blood in the microcirculation. The applied theory considers a fluid with a fully deformable substructure, namely a micromorphic fluid. This analysis is motivated by the fact that blood itself can be considered a suspension of deformable particles, i.e., red blood cells (RBCs), suspended in a Newtonian fluid, i.e., blood plasma. As a consequence, non-Newtonian phenomena such as shear-thinning are observed in blood. To test the micromorphic fluid as a model for blood, the solution for the velocity and the motion of substructure is determined for a cylindrical pipe flow and compared to experimental results of blood flow through narrow glass capillaries representing idealized blood vessels. A similar analysis was also conducted by Kang and Eringen in 1976, but it contains some misprints and minor errors regarding the mathematical expressions and subsequent discussion which are corrected in this paper. For certain material parameters, the micromorphic fluid models capture high-shear blood flow in narrow glass capillaries very well. This concerns both the velocity profiles and the shear-thinning behavior. Furthermore, a parameter study reveals that the flexibility of substructure governs the micromorphic shear-thinning. In this regard, parallels can be drawn to the shear-thinning of human blood, which is also induced by the deformability of RBCs. This makes the micromorphic fluid a complex but accurate model for human blood, at least for the considered experiments.

Funder

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of micromorphic continuum based on a heterogeneous microscale;International Journal of Non-Linear Mechanics;2024-12

2. Estimation of Effective Bulk Modulus of Metamaterial Composites with Coated Spheres Using a Reduced Micromorphic Model;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2024-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3