Electrostatic body forces in cracked dielectrics and their implication on Maxwell stress tensors

Author:

Schlosser Alexander,Behlen LennartORCID,Ricoeur Andreas

Abstract

AbstractIn solid mechanics, Maxwell stresses are known to be induced if a body is exposed to magnetic and, in the case of dielectrics, electric fields. Acting as tractions at outer or inner surfaces as well as volume forces, they are superimposed with tractions and stresses due to mechanical loads and provide a more or less significant contribution, depending on loading, material properties and geometric aspects. The Maxwell stress tensor, constituting the physical and mathematical basis, however, is controversially discussed to date. Several formulations are known, most of them having been suggested more than 100 years ago. Being equivalent in vacuum, they differ qualitatively just as quantitatively in solid or fluidic matter. In particular, the dissimilar effect of body forces, emanating from a choice of established Maxwell stress tensor approaches, on crack tip loading in dielectric solids is investigated theoretically in this paper. Due to the singularity of fields involved, their impact is basically non-negligible compared to external mechanical loading. The findings obtained indicate that fracture mechanics could be the basis of an experimental validation of Maxwell stress tensors.

Funder

Universität Kassel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3