Life Cycle Assessment of Agricultural Wood Production—Methodological Options: a Literature Review

Author:

Perdomo E. E. Alejandro,Schwarzbauer Peter,Fürtner Daniela,Hesser FranziskaORCID

Abstract

AbstractIn Europe, poplar and other fast-growing tree species are considered valuable resources for meeting the required wood demand of the rising bioeconomy. The agricultural technique of short rotation coppice (SRC) has gained relevance to ease the pressure of the demand for wood from forests. Previous studies have implemented the life cycle assessment (LCA) methodology to evaluate such systems’ potential environmental impacts. These studies present different outcomes, though a general pattern on the potential benefit of SRC is observed. The variation of relevant methodological options, such as goal and scope, system boundary, functional unit, reference system, data source, characterization models, and impact categories assessed can significantly affect the results. A consequence of this discrepancy is its effect on results’ interpretation, making the absolute comparison of case studies challenging and hindering the understanding of the potential impacts of SRC LCAs in support of developing a sustainable bioeconomy. Therefore, the current research attempts to understand the methodological implementation of LCA in assessing SRC value chains. Through literature research, studies are analyzed based on the four LCA phases. One of the results of this study shows how most of the articles focus on assessing the impact category related to climate change, while other environmental issues that are particularly relevant for agricultural woody biomass systems are seldomly evaluated. By discussing the state of the art of SRC LCA, this review paper attempts to suggest improvements that will allow future LCA studies to reach a more comprehensive understanding of the overall environmental impact of SRC systems.

Funder

Horizon 2020 Framework Programme

Österreichische Forschungsförderungsgesellschaft

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3