Abstract
AbstractIn Europe, poplar and other fast-growing tree species are considered valuable resources for meeting the required wood demand of the rising bioeconomy. The agricultural technique of short rotation coppice (SRC) has gained relevance to ease the pressure of the demand for wood from forests. Previous studies have implemented the life cycle assessment (LCA) methodology to evaluate such systems’ potential environmental impacts. These studies present different outcomes, though a general pattern on the potential benefit of SRC is observed. The variation of relevant methodological options, such as goal and scope, system boundary, functional unit, reference system, data source, characterization models, and impact categories assessed can significantly affect the results. A consequence of this discrepancy is its effect on results’ interpretation, making the absolute comparison of case studies challenging and hindering the understanding of the potential impacts of SRC LCAs in support of developing a sustainable bioeconomy. Therefore, the current research attempts to understand the methodological implementation of LCA in assessing SRC value chains. Through literature research, studies are analyzed based on the four LCA phases. One of the results of this study shows how most of the articles focus on assessing the impact category related to climate change, while other environmental issues that are particularly relevant for agricultural woody biomass systems are seldomly evaluated. By discussing the state of the art of SRC LCA, this review paper attempts to suggest improvements that will allow future LCA studies to reach a more comprehensive understanding of the overall environmental impact of SRC systems.
Funder
Horizon 2020 Framework Programme
Österreichische Forschungsförderungsgesellschaft
Publisher
Springer Science and Business Media LLC
Subject
Energy (miscellaneous),Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献