Biodiesel Production by Biocatalysis using Lipids Extracted from Microalgae Oil of Chlorella vulgaris and Aurantiochytrium sp.

Author:

Oliveira JoanaORCID,Costa EmanuelORCID,Maia Dias JoanaORCID,Pires José C.ORCID

Abstract

AbstractMicroalgae are lipid-rich microscopic eukaryotic algae that can be used aiming for more sustainable biodiesel production by employing environmentally sound processes. The present work evaluates biodiesel production using a biocatalyst and two microalgae species as oil feedstock (Chlorella vulgaris and Aurantiochytrium sp.). Lipid extraction was performed using different techniques, namely, Soxhlet extractions (8 h — both species) with different solvents (hexane; hexane:ethanol (1:1 v/v); and chloroform) and room temperature hexane extraction (72 h — Aurantiochytrium sp.). Transesterification occurred for 24 h (150 rpm), using 30 % lipase loading. The results showed that high extraction temperatures cause microalgae oil degradation, focused on unsaturated fatty acids, leading to a lower biodiesel conversion yield. Using Aurantiochytrium sp. oil, it was possible to obtain around 55 %wt. of biodiesel conversion yield using oil extracted at room temperature (6:1 methanol:oil molar ratio), whereas for the oil extracted in the Soxhlet apparatus, the biodiesel conversion yield was around 30 %wt.. The low lipid content (1.0 %wt.) and biodiesel conversion yield (up to 25 %wt.) obtained using C. vulgaris show that the biomass used in the current study has low potential for biodiesel production. However, enzymatic biodiesel production from microalgae represents a promising avenue for sustainable energy generation, offering a renewable and environmentally responsible solution to the world’s energy needs. For that purpose, further studies, such as the optimisation of the extraction and transesterification of Aurantiochytrium sp. oil, should be carried out.

Funder

Universidade do Porto

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3