Chemical Composition of the Aboveground Tissues of Miscanthus × giganteus and Relationships to Soil Characteristics

Author:

Pisani OlivaORCID,Klick Sabrina A.ORCID,Strickland Timothy C.ORCID,Pisarello Kathryn L.ORCID,Coffin Alisa W.ORCID

Abstract

AbstractTo reduce the C footprint of human activities, there is a growing need for alternative energy sources including the production of bioenergy feedstocks. Miscanthus × giganteus is a high yielding grass with low environmental impact and high potential for feedstock use. Studying the composition of the aboveground tissues of Miscanthus is important for understanding feedstock quality for biofuel conversion and how crop residue quality may affect soil input management. Data on Miscanthus leaf and stem chemistry including carbon (C), nitrogen (N), macronutrient concentrations, and the optical characteristics of the water extractable organic matter (WEOM) was analyzed to identify differences in composition between aboveground tissues and modeled to identify soil variables that may be correlated with tissue chemistry. Leaves and stems were dominated by N, potassium (K), calcium (Ca), phosphorus (P), and magnesium (Mg), but overall, the leaves contained higher nutrient concentrations compared to the stems. The leaves displayed elevated Si:K (0.0935) and Ca:K (0.445) ratios and lower C:N (36) and C:P (323) ratios compared to the stems (0.0560, 0.145, 150, and 645, respectively). Leaf WEOM contained large, aromatic, and complex structures, while the stem WEOM was dominated by small, recently produced structures. Varying relationships were found between tissue C and the mobile C pool in surface (0–15 cm) and deep (45–60 cm) soils. Overall, Miscanthus leaves had a chemical composition indicative of reduced biofuel quality compared to the stems. The relationships with soil mobile C suggest a dynamic linkage between Miscanthus physiology and this active soil C pool. These results have implications for crop nutrient allocation and nutrient management practices.

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3