Biomass Production and Nutrient Removal by Perennial Energy Grasses Produced on a Wet Marginal Land

Author:

Cooney Danielle R.,Namoi Nictor,Zumpf Colleen,Lim Soo-Hyun,Villamil Maria,Mitchell Robert,Lee D. K.

Abstract

AbstractGrowing dedicated bioenergy crops on marginal land can provide beneficial outcomes including biomass production and energy, resource management, and ecosystem services. We investigated the effects of harvest timing (peak standing crop [PEAK] or after killing frost [KF]) and nitrogen (N) fertilizer rates (0, 56, and 112 kg N ha−1) on yield, nutrient concentrations, and nutrient removal rates of perennial grasses on a wet marginal land. We evaluated three monocultures, including switchgrass (Panicum virgatum L., SW), Miscanthus x giganteus (MG), prairie cordgrass (Spartina pectinata Link, PCG), and a polyculture mixture of big bluestem (Andropogon gerardii Vitman), Indiangrass (Sorghastrum nutans (L.) Nash), and sideoats grama (Bouteloua curtipendula Torr., MIX). Increasing the application of N did correlate with increased biomass, concentration, and subsequent removal of nutrients across almost all treatment combinations. In all grass treatments except MG, PEAK harvesting increased yield and nutrient removal. At PEAK harvest, switchgrass is ideal for optimizing both biomass production and nutrient removal. While our results also suggest short-term plasticity for farmers when selecting harvest timing for optimal nutrient removal, KF harvest is recommended to ensure long-term stand longevity and adequate nutrient removal. If the KF harvest is adopted, MG would be the ideal option for optimizing biomass yield potential. Additionally, we found that the yield of polyculture did not vary much with harvest timing, suggesting better yield stability. Future studies should give consideration for long-term evaluation of polyculture mixtures to assess their biomass yields and nutrient removal capacities.

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3