An Analysis of Poplar Growth and Quality Traits to Facilitate Identification of Climate-Adapted Plant Material for Sweden

Author:

Karacic AlmirORCID,Adler AnneliORCID,Weih MartinORCID,Christersson LarsORCID

Abstract

AbstractPoplar plantations harbor large potential as a renewable source of biomass for bioenergy and other industrial applications. The overall aim of this study is to analyze growth, phenology, stem form, and branching characteristics of 32 poplar clones grown in a trial in southern Sweden for their suitability to be grown as industrial feedstock. In a linear mixed model, performed for diameter at breast height and stem volume, the precision was improved by the use of two competition indices. The significance of phenology and quality characteristics for growth performance and ranking of poplar clones was evaluated through genotypic correlations, and multivariate hierarchical cluster analysis used to group the material. All traits showed moderate to high broad sense heritability. In general, higher stem volume was positively correlated with later leaf senescence, and uncorrelated with spring phenology. Selection efficiency for stem diameter and height was greatly improved between age 3 and 6 years allowing a better precision in selecting a subset of clones to be further tested in production plots and pilot plantations. Two commercial Populus maximowiczii Henry × trichocarpa Torr. & Gray cultivars performed best, while some intraspecific hybrids of P. trichocarpa are considered useful to genetically diversify commercial plantations in Southern Sweden (Belgian clones) or establish plantations in north-central parts of Sweden (Swedish clones). The cluster analysis emphasized growth traits and the grouping of the clones corresponded to their origin (or parentage). The results will facilitate decisions on the use of studied material in breeding, further testing and commercial deployment of poplar plantations in Sweden.

Funder

Svenska Forskningsrådet Formas

Energimyndigheten

SweTree Technologies AB

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3