Assessing the Strengths and Weaknesses of Large Language Models

Author:

Lappin Shalom

Abstract

AbstractThe transformers that drive chatbots and other AI systems constitute large language models (LLMs). These are currently the focus of a lively discussion in both the scientific literature and the popular media. This discussion ranges from hyperbolic claims that attribute general intelligence and sentience to LLMs, to the skeptical view that these devices are no more than “stochastic parrots”. I present an overview of some of the weak arguments that have been presented against LLMs, and I consider several of the more compelling criticisms of these devices. The former significantly underestimate the capacity of transformers to achieve subtle inductive inferences required for high levels of performance on complex, cognitively significant tasks. In some instances, these arguments misconstrue the nature of deep learning. The latter criticisms identify significant limitations in the way in which transformers learn and represent patterns in data. They also point out important differences between the procedures through which deep neural networks and humans acquire knowledge of natural language. It is necessary to look carefully at both sets of arguments in order to achieve a balanced assessment of the potential and the limitations of LLMs.

Publisher

Springer Science and Business Media LLC

Subject

Linguistics and Language,Philosophy,Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3