Fungi associated with the ambrosia beetle Xyleborus perforans (Coleoptera: Curculionidae: Scolytinae) on drought-stressed Pinus in New South Wales, Australia

Author:

Mahony Zali IORCID,Scarlett Kelly,Carnegie Angus J,Trollip Conrad,Laurence Matthew,Guest David I

Abstract

AbstractAmbrosia beetles have co-evolved symbiotic relationships with an array of fungal partners. Mutualistic fungal partners are often highly successful in vertical transmission between beetle generations. These persisting relationships can alter beetle behaviour, resulting in the opportunity to occupy new ecological niches and to spread geographically. In Australia, ambrosia beetles are not currently considered a significant pest in commercial Pinus plantations, where the bark beetle Ips grandicollis is known as the primary invader of stressed trees. However, in 2019, ambrosia beetles Xyleborus perforans and X. bispinatus, co-occurring with I. grandicollis, were found to have colonised a large proportion of drought-stressed trees in commercial Pinus plantations in north-east New South Wales. In this study, X. perforans (the most prevalent of two Xyleborus spp.) was collected from infested dead and dying trees in two NSW Pinus plantations. Fungal isolates of suspected Pinus pathogens were recovered from beetle mycangia and exoskeletons as well as ambrosia beetle galleries. Morphological examination and multilocus sequence analysis identified five fungi associated with X. perforans: Fusarium parceramosum, Fusarium aff. solani, Ophiostoma ips, Raffaelea deltoideospora and Sporothrix pseudoabietina. For Australia, this is the first report of F. parceramosum, as well as the first records of O. ips, R. deltoideospora and S. pseudoabietina being vectored by Xyleborus. Pathogenicity tests were performed on seedlings of three Pinus spp., with O. ips producing significantly longer lesions than the other fungi. This study demonstrates the potential for seemingly harmless ambrosia beetles to vector plant pathogens in Australian forests, providing a mode of disease transmission that should be considered in plantation management and forest biosecurity.

Funder

The University of Queensland

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3