Identification of the best medium for experiments on chemical computation with Belousov–Zhabotinsky reaction and ferroin-loaded Dowex beads

Author:

Muzika F.ORCID,Górecki J.

Abstract

AbstractOur study is focused on identification of the best medium for future experiments on information processing with Belousov–Zhabotinsky reaction proceeding in Dowex beads with immobilized catalyst inside. The optimum medium should be characterized by long and stable nonlinear behavior, mechanical stability and should allow for control with electric potential. We considered different types of Dowex ion-exchange resins, bead distributions and various initial concentrations of substrates: malonic acid and 1,4-cyclohexanedione. The electric potential on platinum electrodes, stabilized by a potentiostat is used to control medium evolution. A negative electric potential generates activator species HBrO2 on the working electrode according to the reaction: BrO3  + 2e  + 3H+  → HBrO2 + H2O, while positive electric potential attracts inhibitor species Br to the proximity of it. We study oscillation amplitude and period stability in systems with ferroin loaded Dowex 50W-X2 and Dowex 50W-X8 beads during experiments exceeding 16 h. It has been observed, that the above mentioned resins generate a smaller number of CO2 bubbles close to the beads than Dowex 50W-X4, which makes Dowex 50W-X2 and Dowex 50W-X8 more suitable for applications in chemical computing. We report amplitude stability, oscillation frequency, merging and annihilation of travelling waves in a lattice of Dowex 50W-X8 beads (mesh size 50–100) in over 19 h long experiments with equimolar solution of malonic acid and 1,4-cyclohexanedione. This system looks as a promising candidate for chemical computing devices that can operate for a day.

Funder

H2020 Marie Skłodowska-Curie Actions

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3