Abstract
AbstractThe bromate–sulfite reaction-based pH-oscillators represent one of the most useful subgroup among the chemical oscillators. They provide strong H+-pulses which can generate temporal oscillations in other systems coupled to them and they show wide variety of spatiotemporal dynamics when they are carried out in different gel reactors. Some examples are discussed. When pH-dependent chemical and physical processes are linked to a bromate–sulfite-based oscillator, rhythmic changes can appear in the concentration of some cations and anions, in the distribution of the species in a pH-sensitive stepwise complex formation, in the oxidation number of the central cation in a chelate complex, in the volume or the desorption-adsorption ability of a piece of gel. These reactions are quite suitable for generating spatiotemporal patterns in open reactors. Many reaction–diffusion phenomena, moving and stationary patterns, have been recently observed experimentally using different reactor configurations, which allow exploring the effect of different initial and boundary conditions. Here, we summarize the most relevant aspects of these experimental and numerical studies on bromate–sulfite reaction-based reaction–diffusion systems.
Funder
Hungarian Scientific Research Fund
Eötvös Loránd University
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Autocatalytic flow chemistry;Scientific Reports;2023-06-06