Optimization of nickel and cobalt biosorption by native Serratia marcescens strains isolated from serpentine deposits using response surface methodology

Author:

Díaz A.,Marrero J.,Cabrera G.,Coto O.,Gómez J. M.ORCID

Abstract

AbstractThe treatment of metal-polluted wastes is a challenging issue of environmental concern. Metals can be removed using microbial biomass, and this is an interesting approach towards the design of eco-friendly technologies for liquid waste treatment. The study reported here aimed to optimize nickel and cobalt biosorption from aqueous solutions using three native metal–resistant Serratia marcescens strains. Ni(II) and Co(II) biosorption by S. marcescens strains was found to fit better to Langmuir’s model, with maximum uptake capacities of 13.5 mg g−1 for Ni(II) ions and 19.9 mg g−1 for Co(II) ions. Different experimental conditions of initial metal concentration, pH, initial biomass, and temperature were optimized using the Plackett–Burman method, and, finally, biomass and metal concentration were studied using the response surface methodology (RSM) to improve biosorption. The optimum uptake capacities for Co(II) ions by the three biosorbents used were obtained for initial metal concentrations of 35–40 mg L−1 and an initial biomass of 6 mg. For Ni(II) ions, the optimum uptake capacity was achieved with 1 mg of initial biomass for S. marcescens C-1 and C-19, and with 7 mg for S. marcescens C-16, with initial concentrations of 20–50 mg L−1. The results obtained demonstrate the viability of native S. marcescens strains as biosorbents for Ni(II) and Co(II) removal. This study also contributes to our understanding of the potential uses of serpentine microbial populations for the design of environmental cleanup technologies.

Funder

Asociación Universitaria Iberoamericana de Postgrado

Universidad de Cadiz

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3