Author:
Woltmann Lucas,Deepe Jonas,Hartmann Claudio,Lehner Wolfgang
Abstract
AbstractAir pollution through particulate matter (PM) is one of the largest threats to human health. To understand the causes of PM pollution and enact suitable countermeasures, reliable predictions of future PM concentrations are required. In the scientific literature, many methods exist for machine learning (ML)-based PM prediction, though their quality is difficult to compare because, among other things, they use different data sets and evaluate the resulting predictions differently. For a new data set, it is not apparent which of the existing prediction methods is best suited. In order to ease the assessment of said models, we present evalPM, a framework to easily create, evaluate, and compare different ML models for immission-based PM prediction. To achieve this, the framework provides flexibility regarding data sets, input features, target variables, model types, hyperparameters, and model evaluation. It has a modular design consisting of several components, each providing at least one required flexibility. The individual capabilities of the framework are demonstrated using 16 different models from the related literature by means of temporal prediction of PM concentrations for four European data sets, showing the capabilities and advantages of the evalPM framework. In doing so, it is shown that the framework allows fast creation and evaluation of ML-based PM prediction models.
Funder
Bundesministerium für Digitales und Verkehr
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine
Reference41 articles.
1. ARPA - Regione Lombardia (2023). Stazioni Meteorologiche.https://www.dati.lombardia.it/Ambiente/Stazioni-Meteorologiche/nf78-nj6b. Accessed 27 Jul 2023
2. ARPA Lombardia (2023a). Form richiesta dati (Meteo e clima).https://www.arpalombardia.it/temi-ambientali/meteo-e-clima/form-richiesta-dati/. Accessed 27 Jul 2023
3. ARPA Lombardia (2023b). Form richiesta dati stazioni fisse (Aria).https://www.arpalombardia.it/temi-ambientali/aria/form-richiesta-dati-stazioni-fisse/. Accessed 27 Jul 2023
4. Chae, S., Shin, J., Kwon, S., Lee, S., Kang, S., & Lee, D. (2021). PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-91253-9
5. Chang, F.-J., Chang, L.-C., Kang, C.-C., Wang, Y.-S., & Huang, A. (2020). Explore spatio-temporal PM2.5 features in northern Taiwan using machine learning techniques. Science of the Total Environment, 736. https://doi.org/10.1016/j.scitotenv.2020.139656