Climate change and future challenges to the sustainable management of the Iraqi marshlands

Author:

Nama Ala Hassan,Alwan Imzahim A.,Pham Quoc Bao

Abstract

AbstractThe application of restoration plans for the Iraqi marshlands is encountering significant challenges due to water scarcity and the impacts of climate change. This paper assesses the impact of water scarcity on the possibility of continuing the application of restoration and sustainable management plans for the main marshlands in Iraq. This assessment was conducted based on the available data and expected situation of available water resources under climate change conditions until the year 2035. Additionally, a satellite image–based index model was prepared and applied for the period 2009–2020 to obtain the spatiotemporal distribution of the restored marshlands. The results show that the shortage in water resources and insufficient inundation rates prevented the adequate application of the restoration plans. Also, applying the scenarios of distributing the deficit equally over all water demand sectors (S1) and according to the percentage of demand for each sector (S2) shows that the expected deficit in available water for the three marshes by the years 2025 and 2035 will be approximately 25% and 32% for S1 and 9% for S2. Consequently, the considered marshes are expected to lose approximately 20 to 33% of their eligible restoration areas. Accordingly, looking for suitable alternatives to support the water resources of these marshes became a very urgent matter and/or recourse to reduce the areas targeted by inundation and being satisfied with the areas that can be sustainable and maintain the current status of the rest of the regions as an emerging ecosystem characterized by lands that are inundated every few years. Accordingly, steps must be urged to develop plans and programs to maintain the sustainability of these emerging ecosystems within the frameworks of climate change and the conditions of scarcity of water resources and water and air pollution to ensure that they are not lost in the future.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3