1. Allan, I. J., Booij, K., Paschke, A., Vrana, B., Mills, G. A., & Greenwood, R. (2009). Field performance of seven passive sampling devices for monitoring of hydrophobic substances. Environmental Science & Technology, 43(14), 5383–5390.
2. Alvarez, D. A., Petty, J. D., Huckins, J. N., Jones-Lepp, T. L., Getting, D. T., Goddard, J. P., & Manahan, S. E. (2004). Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environmental Toxicology and Chemistry, 23(7), 1640–1648.
https://doi.org/10.1897/03-603
.
3. Asfaw, A., Maher, K., & Shucksmith, J. D. (2018). Modelling of metaldehyde concentrations in surface waters: a travel time based approach. Journal of Hydrology, 562, 397–410.
https://doi.org/10.1016/j.jhydrol.2018.04.074
.
4. Bieri, M. (2003). The environmental profile of metaldehyde. In G. B. J. Dussart (Ed.), Slugs & snails: agricultural, veterinary & environmental perspectives (pp. 255–260). Farnham: British Crop Protection Council.
5. Booij, K., Vrana, B., & Huckins, J. N. (2007). Theory, modeling and calibration of passive samplers used in water monitoring. In R. Greenwood, G. A. Mills & B. Vrana (Eds.), Passive sampling techniques in environmental monitoring (pp. 146–169): Elsevier.