Developing PM2.5 and PM10 prediction models on a national and regional scale using open-source remote sensing data

Author:

Mamić LukaORCID,Gašparović MateoORCID,Kaplan GordanaORCID

Abstract

AbstractClean air is the precursor to a healthy life. Air quality is an issue that has been getting under its well-deserved spotlight in the last few years. From a remote sensing point of view, the first Copernicus mission with the main purpose of monitoring the atmosphere and tracking air pollutants, the Sentinel-5P TROPOMI mission, has been widely used worldwide. Particulate matter of a diameter smaller than 2.5 and 10 μm (PM2.5 and PM10) significantly determines air quality. Still, there are no available satellite sensors that allow us to track them remotely with high accuracy, but only using ground stations. This research aims to estimate PM2.5 and PM10 using Sentinel-5P and other open-source remote sensing data available on the Google Earth Engine (GEE) platform for heating (December 2021, January, and February 2022) and non-heating seasons (June, July, and August 2021) on the territory of the Republic of Croatia. Ground stations of the National Network for Continuous Air Quality Monitoring were used as a starting point and as ground truth data. Raw hourly data were matched to remote sensing data, and seasonal models were trained at the national and regional scale using machine learning. The proposed approach uses a random forest algorithm with a percentage split of 70% and gives moderate to high accuracy regarding the temporal frame of the data. The mapping gives us visual insight between the ground and remote sensing data and shows the seasonal variations of PM2.5 and PM10. The results showed that the proposed approach and models could efficiently estimate air quality.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3