Abstract
AbstractStreamflow monitoring networks provide information for a wide range of public interests in river and streams. A general approach to evaluate monitoring for different interests is developed to support network planning and design. The approach defines three theoretically distinct information metrics (coverage, resolution, and representation) based on the spatial distribution of a variable of interest. Coverage is the fraction of information that a network can provide about a variable when some areas are not monitored. Resolution is the information available from the network relative to the maximum information possible given the number of sites in the network. Representation is the information that a network provides about a benchmark distribution of a variable. Information is defined using Shannon entropy where the spatial discretization of a variable among spatial elements of a landscape or sites in a network indicates the uncertainty in the spatial distribution of the variable. This approach supports the design of networks for monitoring of variables with heterogeneous spatial distributions (“hot spots” and patches) that might otherwise be unmonitored because they occupy insignificant portions of the landscape. Areas where monitoring will maintain or improve the metrics serve as objective priorities for public interests in network design. The approach is demonstrated for the streamflow monitoring network operated by the United States Geological Survey during water year 2020 indicating gaps in the coverage of coastal rivers and the resolution of low flows.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献