Evaluating the eutrophication risk of artificial lagoons–case study El Gouna, Egypt

Author:

Abouelsaad Omnia,Matta Elena,Hinkelmann Reinhard

Abstract

Abstract Eutrophication problem in El Gouna shallow artificial coastal lagoons in Egypt was investigated using 2D TELEMAC-EUTRO-WAQTEL module. Eight reactive components were presented, among them dissolved oxygen (DO), phosphorus, nitrogen, and phytoplankton biomass (PHY). The effect of warmer surface water on the eutrophication problem was investigated. Also, the spatial and temporal variability of the eutrophication was analyzed considering different weather conditions: tide wave, different wind speeds and directions. Moreover, effect of pollution from a nearby desalination plant was discussed considering different pollution degrees of brine discharge, different discharge quantities and different weather conditions. Finally, new precautions for better water quality were discussed. The results show that tide wave created fluctuations in DO concentrations, while other water quality components were not highly influenced by tide’s fluctuations. Also, it was found that high water temperatures and low wind speeds highly decreased water quality producing low DO concentrations and high nutrients rates. High water quality was produced beside inflow boundaries when compared to outflow boundaries in case of mean wind. Moreover, the results show that the average water quality was not highly deteriorated by the nearby desalination operation, while the area just beside the desalination inflow showed relatively strong effects. Different weather conditions controlled the brine’s propagation inside the lagoons. Moreover, increasing the width of the inflow boundaries and injecting tracer during tide and mean wind condition are new precautions which may help to preserve the water quality in a future warmer world. This study is one of the first simulations for eutrophication in manmade lagoons.

Funder

Ministry of Higher Education, Egypt

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3