Author:
Varol Tugrul,Ozel Halil Baris,Ertugrul Mertol,Emir Tuna,Tunay Metin,Cetin Mehmet,Sevik Hakan
Funder
Türkiye Bilimler Akademisi
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine
Reference57 articles.
1. Agarwal, K. B., & Ghanekar, K. D. (1970) Prediction of CBR from plasticity characteristics of soil. In Proceeding of 2nd south-east Asian conference on soil engineering, 11–15 June 1970, Singapore, 571–576.
2. ASTM (1883) American Society for Testing and Materials (ASTM) Standard test method for CBR (California Bearing Ratio) of laboratory-compacted soils. Annual Book of ASTM Standards, West Conshohocken, PA, USA, 4.
3. Baziar, M. H., Azizkandi, A. S., & Kashkooli, A. (2015). Prediction of pile settlement based on cone penetration test results: An ANN approach. KSCE Journal of Civil Engineering, 19(1), 98–106. https://doi.org/10.1007/s12205-012-0628-3
4. Chao, Z., Ma, G., Zhang, Y., Zhu, Y., & Hu, H. (2018). The application of artificial neural network in geotechnical engineering. In IOP Conference Series: Earth and Environmental Science, 189(2), 022054. https://iopscience.iop.org/article/10.1088/1755-1315/189/2/022054/meta. (Accessed 30/04/2019).
5. Das, S. K., & Basudhar, P. K. (2008). Prediction of residual friction angle of clays using artificial neural network. Engineering Geology, 100(3–4), 142–145. https://doi.org/10.1016/j.enggeo.2008.03.001
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献