Novel gas exposure system for the controlled exposure of plants to gaseous hydrogen fluoride

Author:

DeMille Katherine F.,Emsbo-Mattingly Stephen D.,Krieger Gary,Howard Michael,Webster Katie B.,DaCosta Michelle

Abstract

Abstract Plants can serve as sensitive bioindicators of the presence of contaminant vapors in the atmosphere. This work describes a novel laboratory-based gas exposure system capable of calibrating plants as bioindicators for the detection and delineation of the atmospheric contaminant hydrogen fluoride (HF) as a preparatory step for monitoring release emissions. To evaluate changes in plant phenotype and stress-induced physiological effects attributed to HF alone, the gas exposure chamber must have additional controls to simulate otherwise optimal plant growth conditions including variables such as light intensity, photoperiod, temperature, and irrigation. The exposure system was designed to maintain constant growth conditions during a series of independent experiments that varied between optimal (control) and stressful (HF exposure) conditions. The system was also designed to ensure the safe handling and application of HF. An initial system calibration introduced HF gas into the exposure chamber and monitored HF concentrations by cavity ring-down spectroscopy for a 48-h period. Stable concentrations inside the exposure chamber were observed after approximately 15 h, and losses of HF to the system ranged from 88 to 91%. A model plant species (Festuca arundinacea) was then exposed to HF for 48 h. Visual phenotype stress-induced responses aligned with symptoms reported in the literature for fluoride exposure (tip dieback and discoloration along the dieback transition margin). Fluoride concentrations in exposed tissues compared to control tissues confirmed enhanced fluoride uptake due to HF exposure. The system described herein can be applied to other reactive atmospheric pollutants of interest in support of bioindicator research.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3