Linkages between pelagic and benthic biota in a deteriorated coastal lake after restoration, Maruit, Egypt

Author:

Mitwally HananORCID,Rashidy Hoda ElORCID,Montagna PaulORCID

Abstract

AbstractUntil the 1960s, Lake Maruit was one of Egypt’s most productive coastal brackish lakes. Continuous polluted discharge from Alexandria city resulted in long-term deterioration. The Egyptian government started a lake restoration program in 2010. Biological linkages between pelagic and benthic communities were assessed in November 2012 using parasitism and predation. This study examined ectoparasites infesting tilapia fish from 300 samples. The platyhelminth ectoparasite, Monogenea, and parasitic-copepod Ergasilus lizae were detected. Platyhelminthes parasitized Oreochromis niloticus and Oreochromis aureus, whereas the crustacean parasitized Coptodon zillii. The parasitic prevalence was low for Cichlidogyrus sp. and Ergasilus lizae. Benthic biotas were similar across basins. Fish abundance does not respond directly to benthic biotic components. Phytoplankton and benthic microalgae were not the main fish diet. Data on Halacaridae and fish clustered, indicating that either Halacaridae responds to their environment like fish or fish prey upon them because of their size. Linear correlations between pelagic, benthic biota, and parasite-infected fish indicate parasites may control their hosts. Some bioindicators indicate that stressed ecosystems differ from unstressed ecosystems. Fish species and biota abundances were low. Inconsistency in the food web and an absence of direct interactions between prey and predators are bioindicators of disturbed ecosystems. The low prevalence of ectoparasites and lack of heterogenous distribution of the various examined biota are bioindicators of habitat rehabilitation. Ongoing biomonitoring to better understand habitat rehabilitation is suggested.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3