Environmental relevance monitoring and assessment of ochreous precipitates, hydrochemistry and water sources from abandoned coal mine drainage

Author:

Tran Tuan QuangORCID,Riechelmann SylviaORCID,Banning AndreORCID,Wohnlich Stefan

Abstract

AbstractThis study investigated the mineralogical and chemical characteristics of ochreous precipitates and mine water samples from abandoned Upper Carboniferous hard coal mines in an extensive former mining area in western Germany. Mine water characteristics have been monitored and assessed using a multi-methodological approach. Thirteen mine water discharge locations were sampled for hydrochemical analysis, with a total of 46 water samples seasonally collected in the whole study area for stable isotopic analyses. Mineralogical composition of 13 ochreous precipitates was identified by a combination of powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM/EDS). Results showed that abandoned mine drainage was characterized by circumneutral pH, Eh values ranging from 163 to 269 mV, relatively low concentrations of Fe and Mn, and was dominated by HCO3  > SO42−  > Cl  > NO3 and Na+  > Ca2+  > Mg2+  > K+. Goethite and ferrihydrite were the dominant precipitated Fe minerals, with traces of quartz, dolomite, and clay minerals. Some metal and metalloid elements (Mn, Al, Si, and Ti) were found in the ochreous sediments. The role of bacteria in the formation of secondary minerals was assessed with the detection of Leptothrix ochracea. The δ18O and δ2H values of mine water plotted on and close to the GMWL and LMWLs indicated local derivation from meteoric water and represented the annual mean precipitation isotopic composition. Results might help to develop strategies for the management of water resources, contaminated mine water, and public health.

Funder

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3