1. Al-Rawabdeh, A., He, F., Moussa, A., El-Sheimy, N., & Habib, A. (2016). Using an unmanned aerial vehicle-based digital imaging system to derive a 3D point cloud for landslide scarp recognition. Remote Sensing, 8(2), 95. https://doi.org/10.3390/RS8020095
2. Balık, F. (2004). Elektro-optik ve SAR uydu görüntüleri ile arazi bitki örtüsünün belirlenmesi. Diss. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
3. Bányai, L., Bozsó, I., Szűcs, E., Gribovszki, K., & Wesztergom, V. (2023). Monitoring strategy of geological hazards using integrated three-dimensional InSAR and GNSS technologies with case study. Periodica Polytechnica Civil Engineering. https://doi.org/10.3311/PPCI.20009
4. Bayramov, E., Buchroithner, M., Kada, M., & Zhuniskenov, Y. (2021). Quantitative assessment of vertical and horizontal deformations derived by 3D and 2D decompositions of InSAR line-of-sight measurements to supplement industry surveillance programs in the Tengiz Oilfield (Kazakhstan). Remote Sensing, 13(13), 2579. https://doi.org/10.3390/RS13132579
5. Bickel, D. L., Brock, B. C., Dubbert, D. F., Doerry, A. W., Raynal, A. M., Rohwer, J. A., Thompson, M. E., & Thompson, M. E. (2018). Synthetic aperture radar cold regions hazard and surveillance monitoring (No. SAND2018-4753PE). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).