Assessment of dimethyl sulphide odorous emissions during coal extraction process in Coal Mine Velenje

Author:

Uranjek Gregor,Horvat Milena,Milačič Radmila,Rošer Janez,Kotnik Jože

Abstract

AbstractUnderground coal extraction at Coal Mine Velenje occasionally gives rise to odour complaints from local residents. This manuscript describes a robust quantification of odorous emissions of mine sources and a model-based analysis aimed to establish a better understanding of the sources, concentrations, dispersion, and possible control of odorous compounds during coal extraction process. Major odour sources during underground mining are released volatile sulphur compounds from coal seam that have characteristic malodours at extremely low concentrations at micrograms per cubic metre (μg/m3) levels. Analysis of 1028 gas samples taken over a 6-year period (2008–2013) reveals that dimethyl sulphide ((CH3)2S) is the major odour active compound present in the mine, being detected on 679 occasions throughout the mine, while hydrogen sulphide (H2S) and sulphur dioxide (SO2) were detected 5 and 26 times. Analysis of gas samples has shown that main DMS sources in the mine are coal extraction locations at longwall faces and development headings and that DMS is releasing during transport from main coal transport system. The dispersion simulations of odour sources in the mine have shown that the concentrations of DMS at median levels can represent relatively modest odour nuisance. While at peak levels, the concentration of DMS remained sufficiently high to create an odour problem both in the mine and on the surface. Overall, dispersion simulations have shown that ventilation regulation on its own is not sufficient as an odour abatement measure.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3