Author:
Ghalehkhondabi Iman,Ardjmand Ehsan,Young William A.,Weckman Gary R.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine
Reference97 articles.
1. Adamowski, J. F. (2008). Peak daily water demand forecast modeling using artificial neural networks. Journal of Water Resources Planning and Management, 134(2), 119–128.
2. Adamowski, J., & Karapataki, C. (2010). Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. Journal of Hydrologic Engineering, 15(10), 729–743.
3. Adamowski, J., Fung Chan, H., Prasher, S. O., Ozga-Zielinski, B., & Sliusarieva, A. (2012). Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Research, 48(1), W01528.
4. Ahmadi, S., Alizadeh, S., Forouzideh, N., Yeh, C.-H., Martin, R., & Papageorgiou, E. (2014). ICLA imperialist competitive learning algorithm for fuzzy cognitive map: application to water demand forecasting. In: 2014 I.E. International Conference on Fuzzy Systems (FUZZ-IEEE), (pp. 1041–1048): IEEE.
5. Alvisi, S., Franchini, M., & Marinelli, A. (2007). A short-term, pattern-based model for water-demand forecasting. Journal of Hydroinformatics, 9(1), 39–50.
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献