Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine
Reference60 articles.
1. Abdullah, S. S., Malek, M. A., Abdullah, N. S., Kisi, O., & Yap, K. S. (2015). Extreme learning machines: a new approach for prediction of reference evapotranspiration. Journal of Hydrology, 527, 184–195.
https://doi.org/10.1016/j.jhydrol.2015.04.073
.
2. Abraham, A., Steinberg, D., & Philip, N. S. (2001). Rainfall forecasting using soft computing models and multivariate adaptive regression splines. IEEE SMC Transactions, Special Issue on Fusion of Soft Computing and Hard Computing in Industrial Applications, 1(xx), 1–6.
3. Adamala, S., Raghuwanshi, N. S., Mishra, A., & Tiwari, M. (2014a). Evapotranspiration modeling using second-order neural networks. ASCE Journal of Hydrologic Engineering, 19(6), 1131–1140.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000887
.
4. Adamala, S., Raghuwanshi, N. S., Mishra, A., & Tiwari, M. (2014b). Development of generalized higher-order synaptic neural-based ET0 models for different agroecological regions in India. ASCE Journal of Irrigation and Drainage Engineering, 140(12).
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000784
.
5. Adamala, S., Raghuwanshi, N. S., & Mishra, A. (2015). Generalized quadratic synaptic neural networks for ET0 modeling. Environmental Processes, 2, 309–329.
https://doi.org/10.1007/s40710-015-0066-6
.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献