1. Ambroise, C., & McLachlan, G.J. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the National Academy of Sciences, 99(10), 6562–6566.
2. Babyak, M.A. (2004). What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66(3), 411–421.
3. Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning Research, 13 (Apr), 1063–1095.
4. Boulesteix, A.-L., Janitza, S., Kruppa, J., & König, I.R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6), 493–507.
5. Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123–140.