Abstract
AbstractThis work investigates a statistical approach analysing data from monitoring activities on marine-coastal areas for environmental quality determination and surveillance. Analyses were performed on a database of the Environmental Protection and Prevention Agency of the Puglia Region. As, Cr, Ni, and Pb concentration values in marine sediments and biota from 2013 to 2015 and 2017 were processed to investigate different contaminant characteristics. Hierarchical cluster analysis identified three contaminant distribution classes with (1) highest Cr, Ni, and Pb concentrations, (2) highest As concentration, and (3) lowest contaminants concentration. The Kruskal-Wallis and Friedman tests showed that contaminant distributions were statistically different when considering the monitoring years and classes. However, statistical similarities resulted during the 2013–2017 and 2014–2015 periods. Spearman’s coefficients displayed positive correlations among the pollutants in each matrix and mainly negative correlations for matrices comparison. This methodology aims to provide a practical support for monitoring to identify potential environmental deterioration over time and correlations with specific contamination sources.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献