Characteristics of particle-bound polycyclic aromatic hydrocarbons (PAHs) in indoor PM2.5 of households in the Southwest part of Ulaanbaatar capital, Mongolia

Author:

Sainnokhoi Tsend-Ayush,Kováts Nora,Gelencsér András,Hubai Katalin,Teke Gábor,Pelden Bolormaa,Tserenchimed Tsagaan,Erdenechimeg Zoljargal,Galsuren Jargalsaikhan

Abstract

AbstractAir pollution, including PM2.5 concentration in Ulaanbaatar (capital of Mongolia) is a serious matter of concern. As the majority of households use coal in large areas of the city, indoor air quality is also posing a serious risk to human health. This study investigated the concentration of polycyclic aromatic compounds (PAHs) in indoor particulate matter (PM2.5) in 10 non-smoker households. Sampling was conducted in winter of 2018, between 27 January and 09 February. Concentrations of PM2.5 in the indoor air of households ranged between 62.8 and 324.8 µg m−3. Total concentration of PAHs also varied in a relatively wide range, between 46.2 and 175.7 ng m−3. Five-ring PAHs represented a considerably high fraction of total PAHs between 25 and 53%, benzo[b]fluoranthene (BbF) and benzo[a]pyrene (BaP) were the two predominant compounds within five-ring PAHs. Significant correlation was found between indoor and outdoor particulate matter levels in wintertime. Considering individual characteristic PAHs, heavier PAHs homologues (4- to 5-ring and 6-ring PAHs) were detected in all households, which suggested the influence of coal combustion and traffic exhaust. Health risk of children attributed to PAHs inhalation was assessed by taking into account the lifetime-average daily dose (LADD) and corresponding lifetime cancer risk. Lifetime average daily dose for children in only one household were slightly higher than health-based guideline level (1.0 × 10−5), defined by WHO, whereas LADD for adults and children of other households were within acceptable limit. The cancer risks from the exposure of children to air pollutants in all households except HH-3 were found high. In the Vibrio fischeri bioluminescence inhibition assay, according to the toxic unit (TU) values of indoor PM2.5 from ten households, all samples were classified as toxic.

Funder

ERDF

University of Pannonia

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3