Trends of nutrients and metals in precipitation in northern Germany: the role of emissions and meteorology

Author:

Lorenz MalteORCID,Brunke Matthias

Abstract

AbstractWe analyzed the precipitation chemistry for a maritime region in northern Germany (Schleswig–Holstein) from 1997 to 2017 in order to reveal temporal and spatial patterns and to evaluate the role of meteorological factors relative to emission reductions in Germany and Europe. Therefore, we applied several statistical methods such as time series decomposition, principal component, and redundancy analysis. We extracted two main groups: (i) a marine group (Cl, Na, Mg) that was related to natural processes like sea spray input and (ii) an anthropogenic group (Pb, Cd, As, Zn, and nitrogen species) with a terrestrial subgroup (Fe, Al, Mn), which were both related to emissions. These groups were valid for the spatial, seasonal, and annual trend data. Other elements, like Ca, K, total P, and sulfate, were influenced by natural and anthropogenic processes. The seasonal variation of ammonium deposition was caused primarily by ammonia emissions and ancillary by precipitation. Most heavy metals as well as sulfate, nitrate, and ammonium showed decreasing trends in concentrations and deposition fluxes. Only Hg did not show any trend. The decreasing depositions of sulfate and total nitrogen were correlated to emission reductions in Germany. The deposition of most heavy metals was influenced by emission reductions on European scale and meteorological factors such as wind speed and humidity. Hg did not show any correlation with the emission time series in Europe. Instead, it was correlated to the NAO index and wind, implying that global emissions and transport pathways determine the temporal development of Hg depositions. Overall, the study reveals that emission reductions positively influence regional depositions for most investigated substances. The regional spatial patterns of depositions were also influenced by local meteorological factors.

Funder

Landesamt für Landwirtschaft Umwelt und ländliche Räume, SH

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3