1. Akram, T., Naqvi, S. R., Haider, S. A., & Kamran, M. (2017). Towards real-time crops surveillance for disease classification: Exploiting parallelism in computer vision. Computers & Electrical Engineering, 59, 15–26.
2. Chad, D., Tyr, W. H., Chen, S., et al. (2017). Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology, 107, 1426–1432.
3. Chohan, M., Khan, A., Chohan, R., Katpar, S. H., & Mahar, M. S. (2020). Plant disease detection using deep learning. International Journal of Recent Technology and Engineering, 9(1), 909–914.
4. Chopda, J., Raveshiya, H., Nakum, S., & Nakrani, V. (2018). Cotton crop disease detection using Decision Tree Classifier. 2018 International Conference on Smart City and Emerging Technology (ICSCET) (pp. 1–5). IEEE.
5. Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., & Traore, D. (2019). Deep neural networks with transfer learning in millet crop images. Computers in Industry, 108, 115–120.