Admissible dissimilarity value (ADV) as a measure of subsampling reliability: case study North Sea cod (Gadus morhua)

Author:

Wischnewski Julia,Bernreuther Matthias,Kempf Alexander

Abstract

AbstractThe shape of the length frequency distribution (LFD) is an important input for stock assessments and one of the most important features in studies of fish population dynamics, providing estimates of growth parameters. In practice, oversampling may occur when sampling commercially important species. At times of more and more limited resources, the length sample size can be optimized at some stages of national or regional sampling programmes, without reducing the quality of stock assessments. The main objective of this study is to demonstrate a general distribution-free methodological approach for an optimization of sample size developed as an alternative to both analytical and bootstrap approaches. A novel framework to identify the reduced but still informative sample and to quantify the (dis) similarity between reduced and original samples is proposed. The identification procedure is based on the concept of reference subsample, which represents a theoretical minimal representative subsample that despite smaller sample size still preserves a reasonably precise LFD for certain species. The difference between the original sample and the reference subsample called admissible dissimilarity value (ADV) serves as the upper threshold and can be used to quantify the reliability of derived subsamples. Monte Carlo simulations were conducted to validate the approach under various LFD shapes. We illustrate in case studies how ADV can support to evaluate adequate sampling effort. The case studies focus on length samples from the German commercial vessels fishing for North Sea cod (Gadus morhua).

Funder

Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3