Cyanobacteria, cyanotoxins, and their histopathological effects on fish tissues in Fehérvárcsurgó reservoir, Hungary

Author:

Drobac Backović Damjana,Tokodi NadaORCID,Marinović Zoran,Lujić Jelena,Dulić Tamara,Simić Snežana B.,Đorđević Nevena B.,Kitanović Nevena,Šćekić Ilija,Urbányi Béla,Meriluoto Jussi,Svirčev Zorica

Abstract

AbstractCyanobacteria are important members of lake plankton, but they have the ability to form blooms and produce cyanotoxins and thus cause a number of adverse effects. Freshwater ecosystems around the world have been investigated for the distribution of cyanobacteria and their toxins and the effects they have on the ecosystems. Similar research was performed on the Fehérvárcsurgó reservoir in Hungary during 2018. Cyanobacteria were present and blooming, and the highest abundance was recorded in July (2,822,000 cells/mL). The species present were Aphanizomenon flos-aquae, Microcystis flos-aquae, Microcystis wesenbergii, Cuspidothrix issatschenkoi, Dolichospermum flos-aquae, and Snowella litoralis. In July and September, the microcystin encoding gene mcyE and the saxitoxin encoding gene sxtG were amplified in the biomass samples. While a low concentration of microcystin-RR was found in one water sample from July, analyses of Abramis brama and Carassius gibelio caught from the reservoir did not show the presence of the investigated microcystins in the fish tissue. However, several histopathological changes, predominantly in gills and kidneys, were observed in the fish, and the damage was more severe during May and especially July, which coincides with the increase in cyanobacterial biomass during the summer months. Cyanobacteria may thus have adverse effects in this ecosystem.

Funder

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Bilateral project Hungary-Serbia

Erasmus+

Åbo Akademi University Doctoral Scholarship Program

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3