Integrating spatial and ecological information into comprehensive biodiversity monitoring on agricultural land

Author:

Ecker Klaus Thomas,Meier Eliane Seraina,Tillé Yves

Abstract

AbstractBiodiversity loss on agricultural land is a major concern. Comprehensive monitoring is needed to quantify the ongoing changes and assess the effectiveness of agri-environmental measures. However, current approaches to monitoring biodiversity on agricultural land are limited in their ability to capture the complex pattern of species and habitats. Using a real-world example of plant and habitat monitoring on Swiss agricultural land, we show how meaningful and efficient sampling can be achieved at the relevant scales. The multi-stage sampling design of this approach uses unequal probability sampling in combination with intermediate small-scale habitat sampling to ensure broad representation of regions, landscape types, and plant species. To achieve broad coverage of temporary agri-environmental measures, the baseline survey on permanent plots is complemented by dynamic sampling of these specific areas. Sampling efficiency and practicality are ensured at all stages of sampling through modern sampling techniques, such as unequal probability sampling with fixed sample size, self-weighting, spatial spreading, balancing on additional information, and stratified balancing. In this way, the samples are well distributed across ecological and geographic space. Despite the high complexity of the sampling design, simple estimators are provided. The effects of stratified balancing and clustering of samples are demonstrated in Monte Carlo simulations using modelled habitat data. A power analysis based on actual survey data is also presented. Overall, the study could serve as a useful example for improving future biodiversity monitoring networks on agricultural land at multiple scales.

Funder

Swiss Federal Institute for Forest, Snow and Landscape Research

Federal Office for the Environment

Federal Office for Agriculture

WSL - Swiss Federal Institute for Forest, Snow and Landscape Research

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3