1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Víegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. http://tensorflow.org/.
2. Ansari, M., Othman, F., Abunama, T., & El-Shafie, A. (2018). Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: Case study of a sewage treatment plant, Malaysia. Environmental Science and Pollution Research, 25(12), 12139–12149.
3. Bo, C., Wu, M. (2009). Research of intrusion detection based on principal components analysis. In: 2009 Second International Conference on Information and Computing Science. pp. 116–119.
4. Boyd, G., Na, D., Li, Z., Snowling, S., Zhang, Q., & Zhou, P. (2019). Influent forecasting for wastewater treatment plants in North America. Sustainability, 11(6), 1764.
5. Carlsson, B., & Zambrano, J. (2016). Fault detection and isolation of sensors in aeration control systems. Water Science and Technology, 73, 648–653.