Real-time and long-term monitoring of waves and suspended sediment concentrations over an intertidal algal reef

Author:

Ly Trung Nguyen,Huang Zhi-ChengORCID

Abstract

AbstractSuspended sediment concentration (c) has been considered a critical environmental factor in reef habitats; however, the values and variations of c are not evident in a unique reef mainly created by crustose coralline algal concretions compared to abundant studies in coral reefs. The results of real-time and long-term monitoring of waves and c over the intertidal algal reef are reported because of the construction of an offshore industrial harbor near the reef. The real-time monitoring systems were based on techniques, including optical backscatter sensors (OBSs) for measuring c, pressure sensors for measuring waves, data loggers, and wireless networks for data transmission. The instruments sampled every hour and ran continuously and automatically for years. The OBS measurement was compared and validated with biweekly water sampling. A good correlation between the results of the two methods was observed. Nevertheless, more calibrations of OBSs in different seasons reduced the variance between the two methods over a year-long timescale. The year-long data showed a remarkable seasonal variation in c. The average c was approximately 140 mg/l during the winter season, while it was only approximately 70 mg/l during the summer season. The observed c was higher than that in other coral reef environments; the elevated and highly variable c, ranging from approximately 0 to 500 mg/l, may be one factor that creates the unique algae reef environment. The year-long measurement of waves and c showed that the variation in c was mainly due to the variation in waves in different seasons and was well correlated with the wave-induced bed shear stress. The real-time and long-term data measured by the system will aid in better understanding and providing useful environmental data for accessing future environmental changes and protecting reef habitats.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3